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The subject of present investigation is the diffraction in such ranges of angles 
between the fronts of weak incident pressure jump and of an oblique compres- 
sion shock attached to a wedge of finite opening angle in which the intersec- 

tion of these occurs at the distorted section of the jump, On the side of smaller 
angles these ranges border on regions of possible regular interaction between 
two shocks coming from opposite directions jJi], while on the side of greater 
angles these border of regions of shock waves moving in the same direction, 
which admit uniform streams in the neighborhood of intersection of fronts p, 31. 
The resulting boundary value problem has much in common with the similar prob- 

lem of regular counter-interaction which was considered in [4]. In that paper, 
as in the present one, the method of analysis is related to the problem of per- 

turbations of a uniform stream behind a plane shock front considered by Light- 

hill [5, 63. 
The effect of triple shock configuration is represented by the combined dyna- 

mic singularity at the triple point, Some of its properties were predicted by 

Landau v]. 
The particular case of motion of a slender wedge at hypersonic speed was 

considered by Inger [8, 91. However his analysis contains statements which 

contradict existing concepts. 

1. The investigated flow, A wedge is moving at supersonic speed MC=&,, 
through a quiescent perfect gas, generating an attached plane compression shock. A weak 
plane pressure jump,whose front is parallel to the edge of the wedge, moves through the 

gas toward it at velocity a, equal to the speed of sound in the gas. The particleofgas 

which at the instant of encounter lies at the edge is the center .&’ of the Mach circle 
whose arcs together with the wedge and the oblique shock constitute the boundary of the 

region of diffraction origination. This region 
is shown in Fig. 1. The motion is self-similar. 
The generated flow regions and parameter 
subscripts used here are the same as in Fig. 1 
in [4]. The angles of inclination a of the 
shock and fi of the wedge, and angle 31 bet- 
ween the plane of the incident front and the 

wedge plane of symmet~ are assumed to be 
finite, and the ratio E of pressure of the inci- 

_‘-i 

Fig. 1 

dent shock and that of the quiescent gas is 
assumed to be a small parameter. The velo- 
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city of point E relative to the wedge is a,M. Axes x and y of the self-similar coor- 
dinates have their origin at that point and are, respectively, perpendicular and parallel 
to the unperturbed compression shock in a plane perpendicular to the wedge edge. 

The diffraction modes in which intersection of wave fronts (point G) occurs within 

the distorted section of the compression shock are considered. The motion of gas behind 

the oblique shock is at subsonic velocity relative to point G ; emergence of any refrac- 
ted wave front from that point into the region of the nonuniform stream is impossible, 

only a tangential discontinuity connects it with the diffraction center E; perturbations 
induced by point G propagate over the whole of the diffraction region. The laws ofcon- 

servation make it impossible to surround the 
triple point by uniform flow regions with any 
a pr i or i specified accuracy even in any 

arbitrarily small neighborhood of it, except 
in cases in which the pressure ratio p1 / per 
and the angle cp = x - a between the 
shock fronts are bounded by the conditions of 
bifurcation (existence of a triple shock con- 

figuration which separates uniform streams) 

ClO, 111. 
The limits of variation for the three input 

parameters p, M, and x, which correspond 

to the investigated modes can be specified 

by a set of plane curves. It is, however, pos- 
sible to define these in terms of the depen- 
dence between two parameters represented 

by the input ikf, = M, sin a and cp. When 

MC and cp are known, the position of point 

G on the unperturbed shock front is readily 

determined 
YC; = - a, (MC cos cp + 1) I a, sin cp (1.1) 

Then the indicated boundary is defined by the geometric locus of points pm f p, and cp 
which correspond to the coincidence of point G and points A and C, where yo = -._ 
T 1/1 - ma, 711~ = M sin y and y = a - p. It is represented in Fig. 2 by the 
outer continuous heavy lines, while the middle corresponds to point G lying at the mid- 
dle of the perturbed section of the compression shock. Points of the thin continuous lines 

correspond to bifurcation conditions [lo, 111. The meaning of dashed lines is explained 
in Sect. 5 below. 

The flow parameters in regions 1 and 2 are defined by formulas (1.1) and (1.2) appear- 

ing in [4J, The dimensionless perturbations of pressure, density, velocity components and 
the dimensionless coordinates 

are formed from related dimensional quantities p’, p’, u’, d, z’, y’ and time t. 
It was shown in [4] that. after Busemann’s transformation r = 2R / (1 + R2), x = 

r cos 8, y = r sin 8 , function p satisfies the Laplace equation within the perturbed 
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region, the condition L$ / I% = (.I at the wall, and along arcs of the Mach circle con- 
dition a~, I &r = 0, where ?Z and s are coordinates taken along the external normal 

and tangent to the contour, respectively. 

2, Boundary condition at the rhock front, The triple point at the disc 
torted section of the shock front defined by the equation z = m -j- f (g), where f (y) 

is of the order of e, separates it into two parts ahead of which the states of gas are dif- 
ferent. Linearization of the laws of conservation yields boundary values of functions u, 
v and p, which along section GG contain additional terms in comparison with section 

GA. It is more convenient, however, to define these boundary values for the whole of 

the shock wave front distorted section AC by the single expression 

(2.1) 

v = - M,f’ + hue (y - yc), Ml = za, (MC - MF1) I (x i I) a, 
4 

P =x+l % M, (f -* i/f’) + h,+ (Y - i/G) 

i 

0, Y < YG 

6(?!--Yd = 1, y>yc 

where x_ is the polytropic exponent and the quantities h,, h,, and hP are the same as 

the second terms in the right-hand sides of formulas (2.2) in [4] ( *), 
Using Eqs, (2.1) from [4] and eliminating r~ and ZI by differentiation along the front 

image, we obtain boundary conditions for p and for 8~ I dy the expression 

(m”- I)% +- [(A + m)y - y 1 i $$ = e!?!_- Ay) s(y)8(y - .!/a) 
Y 

(2.2) 

i% 
-5 

dY 
-+(.+“)6(~-yc) (2.3) 

S (ZJ) I= y fh& - r&J I (A$ - mB) - h, (2.4) 

where 6 (y - yo) is the Dirac delta function. Consequently, y in the right-hand sides 

of (2.2)-(2.4) relates to point G. Constants .& and B are defined by formulas (3.1) 

in Ip]. 
The Busemann transformation convetrs the distorted section of the shock front r = 

m set 8 into an arc of circle 2 R cos 8 = m (1 + R2) in the plane I; = R exy i 0 
orthogonal to the boundary arcs of the Mach circle, without affecting the remaining parts 
of the region boundary. It is further transformed conformally into the rectangle 0 < 
G < 1, 0 < z < n in the plane .z = cr + iz, with 

The mapping function, the quantity I, the relationship f~ = 8 (7) along the shock front 

image, and the constants m, and q appearing in these are defined in [4] by formulas 

f3.V(3.4). 

l ) In [4] h, appears with the wrong sign. This did not, however, affect the results. 



In the 5 -plane condition (2.2) is expressed in the form 

1/1--2sec20~-((mAtg0--Bctg8)~= 

(mAtgO- BctgO)%(s-ssc) 

(2.5) 

and in the z -plane it can be expressed by 

b (T) (8~ / &T) - 8p / dt = S 6 (T - Q) (2.6) 

where b (T) is defined by formula (3.5) in [4]. 

8, Solutfon of thr boundary value problem. Formula(2.6) along the 
shock front image and the conditions along other sections of the contour defined at the 

end of Sect. 1 make it possible to determine function r = 8p / da - idp / dt , which 

is analytic in the rectangle 0 < a < I, 0 < z < n , as the solution of the Remann- 
Hilbert problem [4, 12. 131 

r (4 = 0 69 (co o (z)ol(;(;; &,) + c (0 (2) - Eo (20,1) (3.1) 

which along the contour becomes 

where the constant cO is defined by the expression 

cg = (- IYS I ES’ (I + i tc) I Ib2 (rd) 4 II-‘/~{n L, (I + 

i Tc) L, (I + i c2) I A (1 + i Gs) I [E2 (I + i Tc> + 11)-l 
(3.3) 

(3.4) 

Functions L1 (z), Lz (z), A (z), o (z) = E + iq and CD (z) along all parts of the 
region boundary, constants k, K and others appearing in these are defined in Sect. 4 
and the beginning of Sect. 5 of [4]; the quantities 6r - fi.4 are elliptic theta functions 

c141. 
The separation of real and imaginary parts of expression (3.2) yields derivatives of 

pressure perturbation. Along the shock front image we have 

+ _ (- If ~54 I A I b (T) 
YE--- ‘r/b2 6) + 1 co 4--G 

E2 + c (E - Eo)] - (3.5) 

where functions L1, L2, 1 A 1 and E have I + iT as their argument. Here and sub- 
sequently E (1 + irG) is denoted by &. In the expression for the derivative along the 
wall image 

“,; _ J/-F @s(r, Q) 
64 (TV Q) 

L2A 

[ 

c(E-Ed +coW] 
G 

(3.6) 

the argument of these functions is ir. 
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The normalization conditions under which constants c and Ea used in the derivation 
of the final solution of the problem 

/ ap d-c s = v5 + 
hPB 

x 

-- 
l% Y CT) 

h 
YG- v’ I ‘++=p, 

0 0 
(3.7) 

are determined and not much different from those in the problem with regular interac- 

tion [4]. It can be seen, however, from (3.5) that the integrals which appear there in 
this problem are singular, hence by Cauchy ‘s definition. only their principal parts can be 

used as normalizing tools. Taking the above into consideration, it is possible to define 

constants c and .& by formulas (5.5) in [4], where the integrals Ii - 1s and function 
lp (r) are also defined (*). In this case.constants c,, cs and p6 are of the form 

cl=-Jh-mn2 ’ 2 (MC2 + 1) 81 

b2 PC) + 1 d - (x + 1) Al%lc 1 (3.3) 

S 461 .llcz $ 1 
c.2 = 

- p5 - b’A (Zc) + 1 ’ P6 = -~Mcosy + h, 
Xfl LrlMc 

where 6r is the change of the compression shock angle of inclination after its encounter 
with the incident wave. The principal values of integrals 1s and 1s are taken here, 
while for zG -_j 0 and x they exist in the conventional meaning, since then b (T) - 0 
at the rate of a linear function. 

4. Shape of the compression #hock dl#torted section. Thesecond 
of Eqs. (2.1) for the boundary value of the derivative of velocity perturbation along the 
shock front can be solved with respect to the derivative f of its shape. After differentia- 
tion with respect to y , the derivative du / i3y defined by (2.3) appears in the right- 
hand side of the derived expression. We obtain the differential equation 

(4.1) 

Integration with allowance for the boundary condition f = fzJ’ = 0 at point A yields 
the expression T(U) 

\ [y - t (h)] [% - 

6 

Symbols y (T) and t (a) d e me one and the same dependence.. The normalization con- f 
ditions (3.7) specify the observance of boundary conditions for functions f and f,’ at 

point C . 

6. Nature of solution in the neighborhood of the triple point 
and parring to limit of the diffraction problem with regular in- 
teraction. All components of the arising singularity are represented by the deriva- 
tive 6’~ / 8% along the shock front image (3.5). The solution consists of a smooth func- 
tion, a logarithmic singularity, and a finite compression shock --S/[b2(zG)+11. With 
the use of (2.4) and (1.1) it is possible to indicate the interdependence of input parameters 

*) The factor (--2); was inadvertently omitted in the expression for Y (z) in [4]. 
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which satisfies condition s = 0. This interdependence is shown in Fig. 2 by thin con- 
tinuous lines. In accordance with (3.3) we then have co = 0, hence neither a com- 

pression shock nor a logarithmic singularity are present. In a reasonably small neighbor- 

hood of the triple point the shock fronts and the tangential discontinuity separate streams 
which may differ as little as desired from a uniform pattern. The indicated bifurcation 

curves exactly correspond to those presented in [ 10, 111. The outer and middle posi - 
tions of the triple point yC = T v/1 - ma, 0 (continuous heavy solid lines in Fig. 2) 

impart indeterminacy to formula (3.5) for r --f ro = 0, n, or WC CO.9 (mo / M) 
since then b (T) -3 0. These indeterminacies are readily expanded by the substitution 

EC - E = &’ (zC - -r) since ET’ appears as a factor in cO. In the neighborhood of 

point z = arc Co.9 (?& /M) we then have 

dp/dy=2Sm/nfl-m2-SS(y-yyc), S=-hh, 

At the extreme points the delta function of the same sign and with coefficient s 

(which assumes other values) is combined with other, also finite quantities, so that for 
rC + arccos (m, I M), 0, or n the dependence of pressure on the coordinate along 

the shock front is free of logarithmic singularities (points of bifurcation of the second 
kind). Thus, if in a specific problem by varying any of the external parameters (e. g. 

angle x) point G is made to tend to point A or C (yc --f T v 1 - &, rG 3 0, 
n) , the logarithmic singularity is apparent in an ever diminishing neighborhood of point 
G and is levelled out; at the limit only a finite pressure jump of magnitude S remains 

at the triple point. 
It should be noted that the derivative 8p / dy remains infinite also at the limit, be- 

cause dz / dy --> co. when y --> + VI - m2, although the limit value of ap / dz 
is finite, i.e. for yo = _+ v 1 - m2, curves p = p (y) have vertical tangents. 

It can be readily shown by substituting 1/o = - d 1 -x2, into formula (2.4) that 

the pressure jump, which is equal S , at the shock front image for the extreme right- 
hand position of point G on the latter is equal p4 which exists to the right of point A 

in the solution of the problem of diffraction with regular interaction [4], when point G 
approaches point .d along the Mach arc AF. Formulas (3.8) for constants c1 and c2 
are the same as the formulas in Sect. 5 of [4]. This settles the question of the continuity 

of transition of the derived solution for the pressure into the solution of the diffraction 

problem with regular interaction. 
r- Of interest are also points TG = t1,2, yG = ‘f y mB , A 

when b(z)-+m, the finite pressure jump vanishes, and the logarithmic singularity is 
symmetric (bifurcation of the third kind). These cases are represented in Fig. 2 by dashed 
lines. 

Equation (4.1) implies that the angle of inclination fv’ of the front is defined by func- 
tions of the same kind as the pressure perturbation. In this case the summary coeffiicient 
at the delta function in accordance with (3.5) and (4.1) is equal to 

B [hp + S / (ba + I>] / M,Yc (5.1) 

It relates to every position of point G a certain magnitude of the shock front angle of 
inclination, although the second term in expression (3.5) which appears in (4.1) indi- 
cates that the tangent of that angle tends to infinity when y + yo. This and the exis- 
tence of the logarithmic singularity of pressure show the inadequacy of the linear analy- 
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sis of this problem. The shape of the compression shock in the small neighborhood of 
point G is complex. When considering the shape of front curves calculated and presen- 
ted below, and when attempting to obtain triple shock configurations by geometrical 
construction in the neighborhood of point G, it must be borne in mind that the boundary 

conditions of the problem are related here to the line of the unperturbed oblique shock 
and that point G belongs to that line. 

With allowance for the pointed out defect the obtained jump of the angle of inclina- 
tion of the front can be considered related to the boundaries of some neighborhood of 
point G. 

In the case of bifurcation for S = 0 branches of the distorted shock at the triple 

point are at the angle n - h,B / M,yo to each other, and the described defect dis- 
appears. It is also absent, when point G coincides with points A or C, where the incli- 

nation of the front outside the limits of the diffraction region is defined by the expression 
(5.1). It can be shown by substituting yc = _ 1/l - m2 into (5.1) that at point A 

the inclination is 

which can also be obtained from formula (2.2) in [43 for the refraction angle of the shock 
front in the solution of the diffraction problem with regular interaction. 

6. Re~ultr of computations. The properties of solutions are illustrated in 
Fig. 3, where pressure distribution curves along the shock front (a, b) of the shock front 
shape (c), and of pressure at the wall (d) are shown. These curves relate to the motion 
of the wedge with a 20’ vertex angle at M, = 3.2 and 11 values of angle X in the con- 
sidered range (i25.8”, 132.i”, ?38.6’, i45.3’, 151.8’, 158.i”, 164.i0, 169.5’, i74.3’, 178.5’ 
and 182.2’). This range is fixed by the curves shown in Fig. 2 ; the angle of inclination 

of the compression shock a = 36.3’ and the pressure ratio p, / p1 = 0.248. 
To unify scales the pressure along the front and the shape of the latter are represented 

in terms of coordinate y* = i 1 v 1 - ma which varies from -1 (at point A) to +1 

(at point C), and the pressure at the wall is given in terms of coordinate r measured 
along the wall in both directions from point E so that r = 1 at points A and C. 

The chosen angles X correspond to the spacing of point G at 0.2 1/l - m2, with 
angle X = 125.8” corresponding to the extreme right-hand position of point G at Ye* = 

-1, and subsequently, in the enumeration order, to positions of point G shifted to the left 
at the indicated pitch. This makes it easy to select the required curve of the set, since 

each curve of pressure at the front has a singularity above point G, and the shape ofthe 
front in the neighborhood of that point has its maximum deviation from the initialstraight 
line. The position of wall pressure curves relates to above values of angle X with the 
upper curve corresponding to angle X = 125.8“ . 

The increase of pressure at the wall in the left-hand corner of the diffraction region 
at considerable angles X is explained by the proximity of point G to that part of the 
wall, which in such diffraction modes lies on the oblique section of the jump which is 
close to the wedge edge. 

The curves of pressure along the distorted part of the shock front (curves (a)) in the 
proximity of the boundary points A and C do not show the properties of function P (Y) 
which were described in Sect. 5. The tendency of this function to the ultimate limit for 

I/* - _C 1 in the cases of Yo* = i-1 becomes apparent only in a very small neighbor- 
hood of these points. This is shown by curves (b) drawn in large scale in the nighborhood 
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of point A with related values of go * indicated under the dash-dot lines. 

If point G coincides with point A , the pressure in its proximity falls with increasing 

Y according to a near-logarithmic law, Its shift to the left results in the appearance of 

a logarithmic singularity; the pressure jump changes its sign at transition of point G 

3) 3) 
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- 
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1 __ 
Iid _I 

-/?L? 

Fig. 3 

through the third kind bifur- 

cation point yo = y (qj and 

vanishes at that point, while 
the pressure curve in the neigh- 

borhood of point G becomes 
symmetric. Further shift of 
point G to the left brings it 

to the bifurcation point thus 

ensuring the continuity of 
pressure along the whole of 
the shock front distorted sec- 

tion and causing the change 
of sign of the logarithmicsin- 
gularity and of the pressure 

jump (curves exactly corres- 
ponding to bifurcation or to 

the case of yo = y (zr) do 
not appear in Fig. 3, but curves 
close to these are readily discer- 

nible). The described singu- 
larities reappear when point 
G moves to the left of the 

bifurcation point until it rea- 
ches the second kind bifurca- 

tion point yo = 0, where the 
logarithmic singularity again 
changes its sign and vanishes, 

while the pressure jump per- 
sists up to YC = Y (TV). The 
behavior of function u ($J for 
yo* = Y* (ref andIyc* == 1 is 

the same as for yo* = y* (rr) and yo* = - i. All computations performed are presented 

in Figs. 2 and 3 under assumption that x = 1.4. 

7. On the invest~g&tiono of fngrt, The assumption of a wedge of a small 

opening angle and of its hypersonic speed made it possible for Inger [8, 91 to use Light- 
hill’s symmetric solution of the problem of shock wave diffraction over a blunt edge, 
with the addition of only one term to take into account the additional pressure upstream 
of the diffraction region. The solution derived in this manner is continuous at the point 

of intersection of fronts. 
One of the two constants appearing there and, also. the slope of the tangential discon- 

tinuity at the tripfe point were determined by the author on the assumption of continuity 
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of the distorted front at that point and normal to the tangential dicontinuity of the velo- 
city projection, obtaining for the tangential discontinuity a direction different by a finite 
angle from that of the velocity vector of the uniform stream behind the plane shock front, 
although owing to the problem linearity, this angle can only be of the order of E. It can 
be readily shown that this method violates, for instance, the condition of continuity of 
pressure at the triple point (by determining the slope of the tangential discontinuity and 

the conditions for velocities along it, then expressing the projections of these in terms of 
the front slope and, finally, determining the break in the front and substituting it into the 

condition for pressure at that discontinuity). Other aspects could also be cited, but there 
is no need for that. As described above, in the case of sporadic interaction of two shock 
waves of independent origin moving toward’each other from opposite directions, the flow 

in the small neighborhood of the triple point can be considered as consisting of a system 

of uniform streams, and the solution for pressure to be continuous at that point only for 

certain specific flow parameters which satisfy the condition of bifurcation [lo, 111 ,and 

not for any arbitrary values of these. 
The distribution of pressure perturbation along the wall and the shock front was com- 

puted in [S]. The preturbation along the wall has a maximum which exceeds its maxi- 
mum value at the front, a fact which was stressed by the author in the discussion ofresults. 

Since the normal derivative of pressure perturbation along the wall is zero, considera- 
tions of symmetry imply that the indicated fact does not conform to the principle of 

maximum of harmonic function modulus. 
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